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Fig. 4. Same as Fig. 3, but for a TEj, mode. The two dark rings are blue to
blue-green and indicate the peaks in the radiation. The light rings are
yellow, and indicate nulls.?

where all the field components have time dependence of the form:

eim0+ik,z—iwt

where k, is the axial wavenumber, w is the angular frequency, ¢
is the time, and # is the angle. In Fig. 2, we see the radial
dependence of power flux for two modes (TE 5, TE 4).

TE, , has four peaks between the center and the inner wall of
the waveguide, while the TE, , has two. It is therefore expected
that the two modes will have four and two concentric rings on the
field map, as is clearly visible in Fig. 3 and 4, respectively.
Different modes can be identified using the same arrangement
and technique—for example TE, , and TE,, , have been identi-
fied. Also, asymmetry in the mode can be detected.

The Thomson—CSF gyrotron is designed to oscillate in the
TE,, mode with a magnetic field of about 13.5 kG. Fig. 4 shows
the pattern corresponding to this mode in the correct conditions.
At a lower field, the tubes often oscillate in the TE,, mode,
theoretically with a rotating field pattern. The TE, , modes are
certainly the easiest to identify, as they are not degenerate except
with TM modes that are very difficult to excite in gyrotrons.

The power flux needed to create a clear, high-quality image on
the liquid crystal at (35 GHz) is on the order of 700 mW /cm?. Of
course, only a very small fraction of that power is absorbed in the
liquid crystal sheet. (Based on the liquid crystal sheet material, it
is estimated that only about 1072 of the. clectromagnenc energy
flux is absorbed at 35 GHz.)
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ing objects is presented. The method is based upon an integral equation
which leads to a matrix eigenvalue problem by using the Galerkin proce-
dure. Cutoff wavenumbers are simultaneously calculated with very good
precision for a number of modes near to the order of the matrix eigenvalue
problem. Excellent results are obtained also when the perturbed waveguide
section exhibits reentrant parts or edges. Computing time is short and
storage requirements are moderate. The method is also applicable for
waveguides of arbitrary cross section.

I. INTRODUCTION

The calculation of the modal fields of a uniform, hollow
conducting waveguide and of their corresponding cutoff wave-
numbers is equivalent to the determination of the resonant modes
and frequencies of a two-dimensional resonator. Several numeri-
cal techniques have been set up in the last decades for this
purpose. A comprehensive bibliography up to 1974 is given in [1]
and some further algorithms and developments are described in
[2}-[6].

Most of these techniques may be grouped into two classes. The
former consists of techniques based upon the finite-element (dif-
ference) method or the transmission-line-matrix method which
leads to either large-size standard eigenvalue matrix problems or
multistep iterative schemes. The latter consists of techniques
based upon the solution of integral equations by algorithms such
as the method of moments, the null-field method, the point-
matching method, or the auxiliary source method, which lead to
the solution of small-size nonalgebraic eigenvalue problems.

The techniques belonging to the former class require ad hoc wise
choice of the location, the shape, and the number of meshes
inside the cross section of the waveguide, particularly when
irregular and pointed boundaries are dealt with; moreover, their
application requires time-consuming procedures and/or large
computer memory availability. Storage requirements are strongly
reduced for the techniques belonging to the other class, though
computational time is still fairly long (especially when many
modes must be computed), due to their feature of finding cutoff
frequencies as zeros (or minima) of the determinant of a matrix
whose elements are trascendental functions of the frequency. One
of the most widely known methods belonging to this class is that
described by Spielman and Harrington [7], who expressly point
out that one of the main limitations of their method is the long
computation time required for the calculation of the cutoff fre-
quencies for higher order modes. )

In this paper, we discuss a new algorithm which, though based
on the solution of an integral equation, leads to a small-size linear
matrix eigenvalue problem. This permits us to avoid the time-
consuming procedure for the search of the cutoff frequencies
required by other integral equation methods. The basic feature of
our approach is the use of a real kernel given by recently
determined forms of the dyadic Green’s function for two-dimen-
sional circular and rectangular resonators [8] instead of the
commonly used free-space Green’s function. These forms include
rapidly converging series whose terms are rational functions of
the frequency. These series may be approximated by a small
number of terms without a significant loss of accuracy, so that
the kernel reduces to a real rational function of the frequency, a
feature which allows us to cast the problem into the form of a
linear eigenvalue matrix problem.

We consider structures obtained by perturbing a circular or a
rectangular waveguide of section S, with one (or several) axial
cylindrical conducting sheet, whose intersection with S is a line
(or a set of lines) ¢ as shown in Fig. 1. This line is defined by the
parametric equation

s=s(1)
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Fig. 1. Rectangular and circular waveguides perturbed by conducting sheets.

where s denotes a point on o and / is a suitable abscissa taken
on the line. Line ¢ may consist of separate portions, even if, for a
simple illustration, in most of the following we refer to it as to a
simple line. For the sake of simplicity we assume that ¢ has no
branch points.

The electric field at a generic observation point r inside S,
may be represented as

E(r)=- J’nkf; G(r, s, k)-I(I') dI )

where s”=s(/”) indicates a source point on ¢,k =wyep,n
=yr/¢€,G, is the two-dimensional dyadic Green’s function of
the electric type for the two-dimensional resonator of cross

section S, J, is the current density on the sheet, and the dash in

the symbol of integral denotes the principal value. This specifica-
tion is necessary when r lies on ¢ due to the singularity of G, as
discussed by Yaghjian [10]. It is noted that (1) may be deduced
from Yaghjian’s general expression for the two-dimensional case,
provided a slit-shaped principal surface element is assumed and
considering that J is tangential to o. Due to the nature of the
Green’s functions we use, the field given by (1) satisfies the
boundary condition on the outer circular or rectangular contour.
Then, an integral equation for J, is set up simply by imposing
that the tangential component of E must vanish on o. This
equation has nontrivial solutions, provided k is a resonant wave-
number of the perturbed structure, i.e., a cutoff wavenumber for
a mode of the perturbed waveguide.

When ¢ divides S, into separate regions (such as §; and S, in
Fig. 1(b),(c)) our method yields the modes associated with the
different regions at the same time. When only one of these
regions is of interest, the pertaining modes can be easily identi-
fied.

It is pointed out that, in many practical cases, waveguide
shapes are actually modifications of the rectangular or the cir-
cular one. For instance, ridged waveguides such as the one
recently considered by Dasgupta and Saha [3] may be regarded as
a perturbed rectangular wavegunide. In these cases, our approach
is particularly appropriate because the unknown function J,
must be determined at the perturbing surface only instead of at
the entire boundary, as it is the case in other integral equation
methods. This is very advantageous because it permits one to
consider smaller matrices in numerical computations. Anyway,
any boundary shape may be considered by inscribing a suitable
tubular sheet inside a rectangular or circular contour. Also in this
general case, our method permits to save computing time.
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II. FUNDAMENTAL EQUATIONS

The general expression for the dyadic G, given in [8] for the
rectangular and circular cross section is

—G—e(r’r”k) =aet(r’r”k)+z0zOGezz(r’r”k) (2)

where z is the unit vector directed as the waveguide axis, G,, is
a dyadic transverse to z,, given by

ast(r’r’)

— 1
G, (r,r, k)= —Fvv’g(r,r’)-i»

k2 ,
% k’2n(k'2n -~ k2) em(r)em(r) (3)
and

Gezo (1,7, k) = g(r, )

+X

——*—\P )Y, 4
S i Ty () @
where
r and r generic observation and source points inside S,
respectively;
g the scalar two-dimensional Green’s function for

the two-dimensional Poisson equation subject to
the condition g =0 at the boundary of S;
k, and k, the cutoff wavenumbers for the TE and T™M
modes, respectively, of the rectangular or circular
waveguide;
the electric field for the mth TE mode;
the axial electric field for the mth TM mode;
the solenoidal dyadic, normal to the boundary,
satisfying

VXV XG,(r,r)=18(r—r)+vdg(r,r)

&

A

L
g

(%)

where I, is the transverse unit dyadic and 8(r — r’) represents the
two-dimensional delta function.

Both g and G,, exhibit a logarithmic singularity when r and »’
coalesce. In case of a circular cross section, g and G, are known
in closed form. In case of a rectangular cross sectlon, they are
known in the form of a rapidly converging one-index series where
the logarithmic singularity explicitly appears in the first term. For
ease of reference, the expressions for g and G, are given in
Appendix 1.

The series appearing in (3) and (4) are regular everywhere
inside S; and converge rapidly since their terms go to zero like

k;* (or k7 *). Modal functions e,, and y,,, which are real and
normalized according to
f e, e,ds=1
So ‘
[ hds=1
So

as well as the expressions for k,, and k), may be found in many
text books (see [9], for instance).

The current density may be split into a transverse and a
longitudinal component according to

I, (1) =7, (1) + T, (I)z

where ¢ represents the unit vector tangent to ¢ and J,,J, are
functions to be determined. Substituting (2)—(4) into (1), it is
found that the transverse and longitudinal components of the
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electric field are related to J, and J,, respectively, via the expres-
sions

. og(rs8’) +in s
5 -2 v 2D sy a

—mkf L (rys) (1) (V) dI

oy em(F) NI N dl
— jnk %k},,(k;—kZ) j;em(s) (1) J(I') di
(6)
Ez(r)=—jnkfag(r,s’)Jz(l')d1’
—_—1 lpm r) 7’
”’k,,,—'—kﬂ(kﬂ = [l 2y ar. ()

The symbol of principal value has been retained only in the first
integral in (6) because the functions in the remaining integrals are
regular or have an integrable singularity. For the purpose of
numerical computation, it is convenient to transform the prin-
cipal-value integral in (6) using the identity

2Dy ar- - [,

which is obtained integrating by parts, observing that the singu-
larity of g is integrable, and taking into account the following
properties of g and J,: a) g is zero at any extremum of ¢ lying
on the boundary of S,; b) J, vanishes at’ any extremum of ¢
coincident with an edge (e.g., at the tip of the fin in Fig. 1(a)).

Equation (6) is suitable for representing the field of TE modes
at cutoff, in which case both the current and the electric field are
transverse; (7) is suitable when treating TM modes at cutoff, in
which case both the electric field and the current are longitudinal.
By imposing the boundary conditions E,-t=0,E,=0 on ¢ we
obtain the following equations:

TE Modes
S fes.s ‘”( )dz'+[t(1) G, (s,5")
~t(l’).l,(l’)dl’+2£(—l)—;§"—(flam=0 (82)
k ’ ’ ’ s
W=tz j;em(s)-t(l).l,(l)dl. (8b)
TM Modes
fg(s s)J(l)dl’+Z\p (s) (92)

(")) d" (9b)

It is pointed out that, in deriving (8a) and (9a), we divided both
sides by k: this is permitted because any of its possible values
(eigenvalues to be determined) must be different from zero either
for TE or TM modes.
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IIL.

J, is represented as

PROCEDURE FOR THE CALCULATION OF TE MODES

N
J(I)y= % bw () (10)
n=1
where b = (b, b,," - -, by) is an N-dimensional vector of numeri-
cal coefficients and {w} is an N-dimensional set of base func-
tions defined on o.

The infinite summation in (8a) is truncated up to the Mth
term, that is equivalent to truncate the series in the Green’s
function (3): this is a good approximation provided k is suffi-
ciently smaller than k,,

For computing purposes, ¢ is divided into N elements, each
being approximated by a segment. The lengths of the segments
may differ from each other. Functions w, may be chosen as
shown in Fig. 2 where, for ease of representation, ¢ has been
drawn as a straight line. Functions w, are piece-wise parabolic
and their derivatives are piece-wise linear. Functions like the one
sketched in Fig. 2(a), defined on three consecutive segments, are
used when both extrema neither belong to the boundary of S
nor are edge points. Functions like those sketched in Fig. 2(b)
and (c), defined on two consecutive segments only, are used when
one extremum lies on the boundary of S; or is an edge point. The
choice of these latter functions accounts for the features of the
current at these particular points, namely: a) the current may
differ from zero at the extrema of ¢ that belong to the boundary
of §,, but its derivative must be zero thereat; b) the current must
be zero at the edges but its derivative may differ from zero
(theoretically, of course, it is either zero or it diverges). Base
functions with derivative diverging at edges might be considered
if an improved approximation for the current is desired. Func-
tions w, are interlaced as shown in Fig. 2(d) and they permit to
synthesize very good approximations for the current.

Substituting (10) into (8a) and (8b) and using Galerkin’s proce-
dure [11] we obtain the following algebraic eigenvalue problem:

([o 2)-»[2 %lsl-0  a

where a = (a;,a,, -+, a,), U is the unit matrix of order M, O
is the N X M null matrix, the subscript ¢ denotes the transpose
and

D=diag(ky 2, k3%, -, kaf) (12a)
c —fjg(s s)aw(l) o, (l)dldl’ (12b)
L, =fofaw,(1)wj(1')t(z)-q,(s,s')-t(zf) dldl’  (12c)
UL URHOT (124)

i,j=1,2,--,N m=1,2,---, M.

- When determining (12b) we again used integration by parts and
took into account that either g or w, vanish at the extrema of o.

Matrices C and L are symmetric because of the reciprocity
properties of G, and g. In cases when o is either a loop-shaped
line or a line connecting two points belonging to the boundary of
Sy, our functions w, permit one to synthesize constant currents.
This implies that, in these cases, a linear combination of the
derivatives of the functions w, exists which vanishes on o. Then,
in the said cases, the derivatives of the functions w,, unlike the
functions themselves, are not independent of each other. This
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point lying on the a_ wn
boundary of s, 3l

edge point

@

(b)

Fig. 2. Piece-wise parabolic base functions used for representing the trans-
verse current on the sheet and their derivatives.

observation is important in view of the considerations reported in
Appendix IT which lead to conclude that: a) matrix L is always
positive definite; b) matrix C is positive definite only when ¢ (or
any portion of it) is an open line not connecting points lying on
the boundary of S;; ¢) otherwise C is only semipositive definite
and its rank is R = N — P where P is the number of loops of ¢
plus the parts of o connecting points belonging to the boundary
of Sy. In the last case P, vectors b exist such that Cb=0: it is
evident by inspection that such vectors associated with a null
vector a satisfy (7) with the eigenvalue k=0, This type of
solution must be rejected as spurious.

The solution of (11) constitutes a linear matrix eigenvalue
problem of order M + N, which can be solved using library-
routines such as those described in [12]. A more specialized
algorithm based upon the semipositive definiteness of matrix C
and the positive definiteness of matrix L may be used [13]. This
algorithm reduces (11) to a standard matrix eigenvalue problem
(Ax=Ax) of order M+ R, and calculates only the meaningful
(positive) eigenvalues.

Some doubts could probably arise about the validity of this
procedure when o happens to be everywhere perpendicular to the
electric field of one of the modes of the unperturbed waveguide,
say the mth one: in fact, that mode pertains to the perturbed
waveguide as well and its cutoff wavenumber k,, must be an
eigenvalue of (11), so that (8b) becomes indeterminate because
e, t=0 and k=k,. However, since R,,, =0 for every i (see
(12d)), it turns out that the only equation in system (11) contain-
ing a,, is the mth one, namely

a,(1-k2/k2) =
Then it is evident that a solution of (11) exists such that k=
k,,.,a,, =0, with all the other variables equal to zero. This is
exactly what is expected, so that our procedure holds also in this
particular case.
The field distribution pertaining to any value of k thus found
may be calculated using the expression

E,(r)=—jn{ [ vfg( ,s) (l)dl’

+ k[ G (r,5) (1) w, (1) dl’]+k )A“j @@_(Q} (13)
., se\ T n k2 :

m+1 m
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In cases when o divides §; into two or several separate parts,
the calculation of E at some points suitably placed inside them
permits one to understand whether a cutoff wavenumber pertains
to the region of interest: in this case, indeed, the field in this
region strongly exceeds that in the remaining regions, which is
nearly zero. In some cases, however, the dimensions of the
interesting portion of S, are much larger than those of the other
portions so that one can expect that the lower eigenvalues pertain
to the region of interest. In these cases, the said test procedure
might be omitted.

IV. PROCEDURE FOR THE CALCULATION OF TM MODES

In comparison with the aforesaid procedure, the determination
of TM modes is fairly easier because (9a) is simpler than (8). J, is
represented as

N
L(1) = ¥ Bu,(I')

n=1

(14)

where ¥ = (b1, b,,--,by) is an N-dimensional vector of
numerical coefficients and {u} is an N-dimensional set of base
functions defined on o. Triangular functions as those shown in
Fig. 3 may be chosen. When edge points are present, “half-trian-
gle” base functions are considered (Fig. 3(b)) in order to ap-
proximate the possible singularity in J,. When an improved
approximation of the current is desired, singular base functions
might be considered. Applying Galerkin’s method, the problem is
cast into the matrix form

(¢ o]-elz =Ne]-0 oo

where a’ = (af, a5, -+, a)y), O’ is the N X N null matrix and

D’ = diag (k{2 k57 ki) (162)
Li;= f fa u; (1) g(s,s")u, (1) dldl’ (16b)
;1
Rim= i faui(l)xl/m(s) dl. (16¢)

Evidently problem (15) admits N independent solutions with
k=0,a’=0,d # 0, which must be discarded. Anyway, problem
(15) may be easily cast into the standard form

(D’-R\LR)a’ =k’ (17

which admits only M eigenvalues and eigenvectors. Vector ¥ is
deduced from a’ by

V=-L""Ra. (18)
The rearrangement of (15) into (17) and (18) is possible because
L’ is always nonsingular (see Appendix II). Also for TM modes,
it is easily shown that no problem arises in particular cases when
o does not perturb a certain waveguide mode, that is when i, is
everywhere zero on ¢.

The field is calculated using

E(r)=- jnk[ % 6 fs(ra) (1)

M
+ Xk Wn(r)a,|. (19)
m+1
In cases when ¢ divides S, into separate regions, the identifi-
cation of the modes pertaining to the region of interest is done
following the same procedure described for TE modes.
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edge point

®)

Triangular base functions used for representing the longitudinal cur-
rent on the sheet (or the charge, in the case of TEM modes).

Fig. 3.

V. PROCEDURE FOR THE CALCULATION OF TEM MODES

This case, included for completeness, is totally independent of
the above considerations. In fact, here one is interested only in
modal fields, because cutoff wavenumbers are obviously zero.
These fields are determined as gradients of the electrostatic
potential ®(r), which may be expressed using the same scalar
Green’s function g previously considered. We have

o(r) = fa g(r,s) o, (1) dl’

where p, represents the surface charge density on .

Let us consider the case where Q inner conductors exist, whose
contours are the separate lines oy, 0,,- - -, g5, not contacting the
boundary of S;. In this case, ¢ is constituted by the set of the
said lines and, perhaps, by a further separate line ¢* contacting
the boundary of S;.

For any of the Q basic TEM modes, ®(r) is uniquely de-
termined by assigning the potentials ®;,®,, -, ®, at the inner
conductors [15]. Denoting with u, triangular base functions like
those shown in Fig. 3, the charge density inside §, may be
represented as

(20)

N*+ N

p(1)= X b (+ T

n=N*+1

b u, (1I')

N

+ Y

m=N—Ny+1

bu, (1) (21)

where each summation represents the charge distribution on the
various separate portions of ¢, and N* N,---, N, are the
numbers of the base functions on 6%, 6;," -+, g,.

Observing that the potential on ¢* must be zero like the
potential of the boundary of S;, Galerkin’s procedure yields

(22)

where b” is the N-dimensional vector constituted by coefficients
by L’ is the same N X N matrix defined by (16b), and f is the
N-dimensional vector defined as

0, forlsn< N*

/= v, [ u, (1) d’

q

for N¥+ .-+ +N,_y<n
SN*+---+N,_1+N,.
Since L’ is nonsingular, system (21) yields a solution for any

given vector f.
The expression for calculating ®(r) is

N
o(r) = Z_‘,l b"fag(r,s') u, (') dl". (23)
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VI. OUTLINE OF THE METHOD FOR COMPUTING MATRIX
ELEMENTS

A program has been set up which follows the discussed proce-
dure. Here we limit ourselves to outline the method adopted for
computing matrix elements but we fail to discuss specific ques-
tions (for inmstance, the possibility of reducing the size of the
matrices when symmetric geometries are dealt with, etc.). More
details may be found in [13].

Let us consider, for instance, the coefficient L;, given by (16b).
Due to the singular behavior of g, it is convenient to split g into
a singular and a regular part, writing

’ 1 7
g(s,s)=—2—ﬂlnR+g0(s,s)

where R =|s — 5’| and g, is a regular function deducible from the
expressions reported in Appendix I. Then L, may be cast into
the form

L, =/A'u,(l)xj(l) dl+_/;‘u,(l)yj(l) di (24)
where x,(1)= —%;fA w,(I")In Rdl’ (252)
y (1) = fA u,(I") go(s,8") dl’ (25b)

and A, denotes the support of the function u,.

It is noted that functions x, and y, are regular and that
function x, may be calculated analytically. Anyway, functions x,
and y, exhibit a quite complicated behavior which discourages
the exact analytical calculation of L] ;. For this reason, the
integrations appearing in (24) are performed analytically using
piece-wise parabolic approximations of these functions in place
of their exact expressions. The coefficients appearing in the
parabolic approximations are calculated in such a way that the
approximate functions are coincident with the exact values at
three points within each segment constituting A,. Then the
computation of the integrals in (24) requires the previous de-
termination of the functions x; and y at six points (or three
points in case of A, placed at an edge , see Fig. 3(b)). The values
of x, are directly obtained from the known expression of this
function whereas the values of y; are computed from (25b) using
similar piece-wise parabolic approximations for g,.

The computation of coefficients C, ;»L,,» which involves singu-
lar integrands like the one discussed above, is performed follow-
ing the same procedure. The calculation of coefficients R,,,, R},,,
is carried out using parabolic approximations for the functions
t(l)-e,(s) and ¢, (s).

It is pointed out that this method of computation is much
faster than conventional numerical integration; furthermore, our
choice of a parabolic approximation of the functions to be
integrated allows a high accuracy even in cases when A, and A
are close to each other or when A, and/or A, are not small. This
advantages overwhelm the algebraic complexity of the procedure

we adopted.
VIL

The first example refers to a circular waveguide perturbed by a
radial conducting sheet (see Fig. 4). This example has been
chosen because the theoretical solution is known, thus permitting
the evaluation of the precision obtained. The sheet has been
divided into four segments, the one at the edge being much
shorter than the others, in order to achieve a good representation
of the rapid variations of the current near the edge while using a

SOME EXAMPLES
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Fig. 4. Calculated mode patterns for a circular waveguide perturbed by a
radial fin. TE and TM mode patterns show the electric and magnetic
field-lines, respectively.

TABLE1
A0DE ERROR (D) N I CPUTIME MENORY
T E1/2.1 €3 oD
T Em" 0.3 0.2) 4 4 W SEC 2K
T E5/2'| 0.7 0.7)
TE V2 5.1 S.1D
T HI/Z.I 0.
TH3/2'1 0.06 5 g 4 SEC 4K
™ 5/2,1 0.1
TH V2.2 u.24

base function of the type shown in Fig. 2(c). The errors in the
cutoff frequencies obtained for the lower TE and TM modes are
reported in Table I, together with CPU time and memory require-
ments referred to a Honeywell DPS8/44 computer (time for
tracing the mode patterns is not included). Fig. 4 shows the mode
patterns. TE mode patterns refer to the electric field, as calcu-
lated using (13). TM mode patterns represent the magnetic-field
lines obtained as constant-E, contours. E, was calculated using
(19).

The accuracy obtained in the calculation of the field for the
TE, ,,; mode is better illustrated in Fig. 5(a), which represents
the electric field along the diameter containing the perturbing fin.
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Fig. 5.

Electric field along the diameter computed using: (a) base function with finite derivative at the edge, (b) base function with the

correct diverging derivative at the edge.

Computed values (represented by stars) are very close to the
theoretical ones (continuous line) except near to the tip of the
perturbing conductor. Field errors are ascribed to the use of a
base function having a finite derivative at the tip of the fin, which
does not permit a sufficiently good approximation of the current,
whose derivative should diverge like (x —1)2. It is noted,
however, that the inaccuracy of the representation of the current
has a small influence on the accuracy of the computed cutoff
wavenumbers: for instance, in spite of the small values of N and
M, the dominant cutoff wavenumber has an error of only 0.3
percent. This happens because the cutoff wavenumber is a varia-
tional quantity, whereas the field is not.

On the other hand, considering a more appropriate base func-
tion, whose derivative diverges with the correct law at the edge, is
no problem and it only introduces a small complication. We
explored the utility of introducing such a base function in the
computation of TE modes. In this case, the fin has been subdi-
vided into equal parts and the calculation has been repeated with
the same values of N and M as before. We found even better

precision in the calculation of the cutoff wavenumbers (see Table
I, values in parentheses) and negligible field errors everywhere
(see Fig. 5b).

The second example concerns the calculation of the TM modes
for a circular waveguide starting from a square cross section.
Mode patterns and accuracies in wavenumbers are represented in
Fig. 6. This computation was performed considering the symmne-
try with respect to a median of the square. In this calculation, we
employed N =10, M =8. It is pointed out that the computed
fields were practically zero outside the region of interest. The
obtained accuracy was very good.

Figs. 4-6 evidence the excellent representation of the field
discontinuities at ¢. This is a consequence of the use of a Green’s
function where the singularity is expressed in closed form.

The last example concerns the double-ridged waveguide studied
by Jull et al. [14] and, more recently, by Dasgupta and Saha [3]

" (see Fig. 7). The values of A_/a obtained for the first two TE

modes are reported in Table I In this example, we used N =
11, M = 3 and we considered the symmetry.
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€= 0.320 % TM2,2

Fig. 6. Calculated TM mode patterns for the circular waveguide studied as a

square waveguide perturbed by a tubular sheet. The quantity € is the error
percent of the caleculated cutoff wavenumbers.

We note that our method is particularly well suited for study-
ing the dominant mode of a reentrant waveguide as the one we
considered. In fact, in this case, the first eigenvalue is much
smaller than the cutoff wavenumber of the dominant mode for
the unperturbed guide, so that the modal series may be truncated
up to a very small number of terms (M equal 2, 1, or even 01)
without any significant loss of accuracy. In other words, in this
case the field is determined very well using the low-frequency
approximation of the Green’s function.

VIIL

Our method requires the solution of a linear eigenvalue prob-
lem of order N+ M or N for the determination of TE or TM
modes, respectively. We recall that N is the number of the
variables b, representing the current over the portion of the
boundary not coincident with the rectangular or the circular
boundary of S, and M is the number of the auxiliary variables
a, introduced to reduce the eigenvalue problem into a linear
form. Other methods based on an integral equation require the
solution of a nonlinear eigenvalue problem of order N’> N,
equal to the number of the variables needed to represent the
current over the whole boundary of the waveguide. In this
section, we compare the computation time required by our method
with that required by other methods. In this comparison we refer
to the computation of TE modes, which is more cumbersome
than the computation of TM modes.

When most of the perturbed boundary coincides with the
unperturbed rectangular or circular boundary, in spite of the
introduction of the auxiliary variables a, N + M may be less than
N’ and the computational advantage of using our method is
evident. Some doubts might arise about the utility of our al-
gorithm when the perturbed boundary is totally inside the unper-

COMPUTATIONAL ADVANTAGES
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- : 4
Fig. 7. Double-ridged waveguide. The relative dimensions are: b/a =
0.5:d/b=s/a=c/a=0.125. The points drawn on a ridge indicate the
subdivision adopted in the calculation,

TABLE II
0UR DASGUPTA
MODE UR JULL ET AL,
HETHOD SAHA
TE 1t | 4.549 7 516
TE 20 1.917 - 196

turbed boundary, since in this case our integral equation is over
the whole boundary as in other integral equation methods, and
N+ M > N’. Furthermore, our Green’s function looks more com-
plicated than the free-space Green’s function usually employed in
other methods.

Let us consider a typical case where the unperturbed boundary
is circular and N =10, M =8. We found experimentally that, in
this case, CPU time required to perform the main operations is
approximately subdivided as follows:

computation of matrix C(10x10) 02T
computation of matrix L(10x10) 04 T
computation of matrix R(8x10) 01T
solution of the eigenvalue problem 01 T

where T is the total CPU time. It turned out that about 8-10 of
the computed modes were determined with acceptable accuracy.

Let us suppose to solve the same problem by the Spielman—
Harrington method [7], which we assume as representative of
other integral equation methods. Using this method, the cutoff
wavenumbers should be determined as the values of k which
minimize the determinant of a complex 10Xx10 matrix Z(k),
whose elements are calculated using a formula similar to (12b),
but involving, in place of g, a Hankel function of argument
depending on k. We estimate that the calculation of Z(k) should
require a time of the same order of the time needed to calculate
our matrix C, that is 0.2 7. Localizing any of the minima of
det Z(k) should require repeated calculations of the elements of
Z(k) and of its determinant. Then, we may estimate that only
five of these calculations should take a longer time than 7 and
only five computations of det Z(k) are by far insufficient to
localize a minimum, especially when no estimate of its location is
available. Furthermore, the determination of the wall current for
any mode should require the computation of the eigenvector
corresponding to the smallest eigenvalue of the matrix X =
Im Z(k).

These brief considerations show the computational advantage
of our method, especially when more than one mode is to be
determined. It is pointed out that the advantage derives from the
possibility of reducing the determination of the cutoff wavenum-
bers to the solution of a linear eigenvalue problem, where matrix
elements are calculated only once.
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APPENDIX I G, (x,y,x, y’)
A. Expressions of g and G, for Two-Dimensional Resonators of AR T D IMX,S,,
Circular Cross Section " 4n it T B (T, - B)(T,,— D)
The radius of the circle is indicated by a and the polar 9 & GY, (V, F- H)
coordinates of the observation and source point are indicated by - 4y Z (V —A)(V,—C)

r, ¢; r', ¢, respectively. Fundamental unit vectors at the observa-
tion and at the source point are indicated by #, ¢, #, ¢. We have

g(r.e,r,¢)= 2—1ﬂ In(7R,/aR)

(rP+r)Cc-2r . (r2+r*+4a>)C-2m
R? (r’Rl/a)2

G, (r. 9,7, ¢)=8i 2CIn(rR, /aR)+

2 2
1+a—)(1+a—)
r2 r/2

L 9 ,
T[ 2SIn(rR,/aR)+

LC—AS+——rr,—;)
(r’R,/a)

(=r")s  (FP+r7-24°)8
R? (r’R,/a)2

e

+

2 2
1—5’;)(1+“—2>(LS+AC)
r- r

A% 2 __ 2 2 2 2 2 2
+Q[2S1n(r'R,/aR)+(’ r)S _ (" ~2a )S—(1+%)(1—%)(LS+AC)

877 R2 (r’R,-/a)z

&;A’ , P2+rYC=2r (r2+r’2—2a2)(rr’/a2—C) "

+5- [2CI(r R,/aR)—( R)2 + . -
(r’Ri/a) a

—(1—:—;)(1—:—;)(LC—AS+%) .
R=(r*+r?-2nmC)”?
R, =(r+a%/r? —2ra’c/r)"”
C= cos(qb - ¢’)
S=sin(¢—¢)
L=1n(rR,/a%)
A=1g7 [ mS/(a® - rC)].

9% & MX,(T,L-N)

B. Expressions of g and G,, for Two- Dimensional Resonators of _rx Z
Rectangular Cross Section 4q (T - B)(T,,— D)

The section is referred to x, y axes with the origin placed at a 9 1. V,-C EGY,U,
corner. The length of the sides of the rectangle are indicated by a + . _230 miy In VoA " (V,— ANV, - )

(in the x direction) and b. The fundamental unit vectors are
indicated by %, . We have the following expressions:

A s[7(x— x)/a]
B=cos[7r(y—y’)/b]
C s[w(x+x’)/a]
D=cos[7r(y+y’)/b]
E=sin(7x/a)
F=cos(7x/a)

1) InR

mn

g(x,y,x',y')=— Z m, n

4 T,— B G =sin(7x’/a)
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H=cos(wx'/a)

I'=sin(wy/b)
L =cos(my/b)

M=sin(7ry’/b)
N =cos(7y’/b)

Ry =[(x=x,)"+(y = 3]
x,=(m+1/2)a+(-1)"(x"—a/2)
Ym=(m+1/2)b+(~1)" (¥~ b/2)
X,=n(x—x,)/b
V,=m(y=yn)/a

1/2

S, = sinh( X,,,)
7, =cosh(X,)
U, =sinh(7,)

Vv, =cosh(Y,).

Singularities in g and G, are exhibited by the terms correspond-
ing to m=0,n=0.

APPENDIX II

A. Semipositive Definiteness of Matrix C

Let us consider the quadratic form x,Cx where ¥ is any real
N-dimensional vector different from zero. Due to (12b) we have

xCx=Y x%,C, = [w(D)p(l) dl (A1)
] o
where
p(l)=Zx,%‘%
¥(1) =_/;8(3,S’)p(l') dar.

Due to the meaning of g, ¢(/) is coincident with the electrostatic
potential on ¢ given by a charge density p distributed on o itself.
Then (Al) is coincident with the expression of the electrostatic
energy of this charge and, therefore, it is nonnegative. Null values
of x,Cx may occur only with a vector x such that p(J) is zero, or,
equivalently, such that £ x,w, = constant. Due to the choice of the
basis {w,} such a vector exists if o connects two points lying on
the boundary of S, (see Section III). More generally, denoting by
P the sum of the number of the portions of ¢ which connect
points on the boundary plus the number of loops, P independent
such vectors exist. Then C has P null eigenvalues and its rank is
R=N-P.

B. Positive Definiteness of Matrix L’

It is easily deduced that a quadratic form assoicated with L’
represents the electrostatic energy due to a charge density given
by

() =X xu,.
i
This cannot vanish, due to the independence of the functions u,.
Then, the quadratic form is always positive and matrix L’ is
positive-definite.
C. Positive Definiteness of Matrix L

Due to (12¢), a generic quadratic form associated with L is
x,Lx=Zf/ult(l)'ast(s,s’)~t(l’)uj did’.  (A2)
1,7 o°c

The solenoidal dyad G,, may be expanded as

en(r)

G (r,r) =g ol (89
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This expansion is easily established starting from (5), taking into
account that v X V Xe, = k2e,,n Xe, =0 at the boundary,
and using the property of eigenvectors e,, of being mutually
orthogonal and orthogonal to ¥ v’g. By substituting (A3) into
(A2), we obtain

x,Lx=§(‘/;f(l)%dl

where f(/)=2X"x,w, (/). Since functions w, are linearly indepen-
dent f(I) cannot vanish, so that the quadratic form is always
positive. Then matrix L is positive-definite.
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