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Fig. 4. Sarue as Fig. 3, but for a TEO ~ mode. The two dark rings are blue to
blue-green and indicate the ~eaks ‘in the radiation, The light rings are
yello~, and indicate nulls.3 -

where all the field components have time dependence of the form

~imb’+ikzz-iut [3]

where k= is the axial wavenumber, a is the angular frequency, t
is the time, and O is the angle. In Fig. 2, we see the radial

dependence of power flux for two modes (l%O,z, TE0,4).

TE0,4 has four peaks between the center and the inner wall of
[4]

the waveguide, while the TE0,2 has two. It is therefore expected

that the two modes will have four and two concentric rings on the [5]
field map, as is clearly visible in Fig. 3 and 4, respectively.

Different modes can be identified using the same arrangement [6]

and technique-for example TE2,4 and TEIZ, ~ have been identi-

fied. Also, asymmetry in the mode can be detected. [7]

The Thomson-CSF gyrotron is designed to oscillate in the

TE02 mode with a magnetic field of about 13.5 kG. Fig. 4 shows
[8]

the pattern corresponding to this mode in the correct conditions. [9]

At a lower field, the tubes often oscillate in the TE2,2 mode,

theoretically with a rotating field pattern. The TEO,. modes are LOI

certainly the easiest to identify, as they are not degenerate except

with TM modes that are very difficult to excite in gyrotrons.

The power flux needed to create a clear, high-quality image on

the liquid crystal at (35 GHk) is on the order of 700 mW/cm?. Of

course, only a very small fr~ction of that power is absorbed in the

liquid crystal sheet. (Based on the liquid crystal sheet material, it

is estimated that only about 10– 3 of the electromagnetic energy

flux is absorbed at 35 GHz.)
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ing objects is presented. The method is based upon an integraf equation

whkfr leads to a matrix eigenvafue problem by using the Gaferkin proce -

dure. Cutoff wavenumbers are simultaneously cafcufated with very good

precision for a number of modes near to the order of the matrix eigenvafue

problem. Excellent results are obtained also when the pertorbed waveguide

section exhibits reentrant parts or edges. Computing time is short and

storage requirements are moderate. The method is ah applicable for

waveguides of arbitrary cross section.

I. INTRODUCTION

The calculation of the modal fields of a uniform, hollow

conducting waveguide and of their corresponding cutoff wave-

numbers is equivalent to the determination of the resonant modes

and frequencies of a two-dimensional resonator. Several numeri-

cal techniques have been set up in the last decades for this

purpose. A comprehensive bibliography up to 1974 is given in [1]

and some further algorithms and developments are described in

[2]-[6].

Most of these techniques maybe grouped into two classes. The

former consists of techniques based upon the finite-element (dif-

ference) method or the transmission-line-matrix method which

leads to either large-size standard eigenvalue matrix problems or

multistep iterative schemes. The latter consists of techniques

based upon the solution of integral equations by algorithms such

as the method of moments, the null-field method, the point-

matching method, or the auxiliary source method, which lead to

the solution of small-size nonalgebraic eigenvalue problems.

The techniques belonging to the former class require ad hoc wise

choice of the location, the shape, and the number of meshes

inside the cross section of the waveguide, particularly when

irregular and pointed boundaries are dealt with; moreover, their

application requires time-consuming procedures and/or large

computer memory availability. Storage requirements are strongly

reduced for the techniques belonging to the other class, though

computational time is still fairly long (especially when many

modes must be computed), due to their feature of finding cutoff

frequencies as zeros (or minima) of the determinant of a matrix

wh~se elements are transcendental functions of the frequency. One

of the most widely known methods belonging to this class is that

described by Spielman and Harrington [7], who expressly point

out that one of the main limitations of their method is the long

computation time required for the calculation of the cutoff fre-

quencies for higher order modes.
In this paper, we discuss a new algoritl& which, though based

on the solution of an integral equation, leads to a small-size linear

matrix eigenvalue problem. This permits us to avoid the time-

consuming procedure for the search of the cutoff frequencies

required by other integral equation methods. The basic feature of

our approach is the use of a real kernel given by recently

determined forms of the dyadic Green’s function for two-dimen-

sional circular and rectangular resonators [8] instead of the

commonly used free-space Green’s function. These forms include

rapidly converging series whose terms are rational functions of

the frequency. These series may be approximated by a small

number of terms without a significant loss of accuracy, so that

the kernel reduces to a real rational function of the frequency, a

feature which RI1OWSus to cast the problem into the form of a

linear eigenvalue matrix problem.

We consider structures obtained by perttubing a circular or a

rectangular waveguide of section SO with one (or several) axial

cylindrical conducting sheet, whose intersection with & is a line

(or a set of lines) u as shown in Fig. 1. This line is defined by the

parametric equation

S=s(l)

m@
Fig. 1, Rectangular and circular waveguides perturbed by conducting sheets.

where s denotes a point on o and 1 is a suitable abscissa taken

on the line. Line u may consist of separate portions, even if, for a

simple illustration, in most of the following we refer to it as to a

simple line. For the sake of simplicity we assume that u has no

branch points.

The electric field at a generic observation point r inside SO

may be represented as

E(r) = – jqkf%,(r, s’, k). JO(l’) dl’
o

(1)

where s’:s (1’) indicates a source point on u, k = ofi, q

=~, G, is the two-dimensional dyadic Green’s function of

the electric type for the two-dimensional resonator of cross

section SO, Jo is the current density on the sheet, and the dash in

the symbol of integral denotes the principal value. This specifica-

tion is necessary when r lies on o due to the singularity of G=, as

discussed by Yaghjian [10]. It is noted that (1) maybe deduced

from Yaghjian’s general expression for the two-dimensional case,

provided a slit-shaped principal surface element is assumed and

considering that JO is tangential to u. Due to the nature of the

Green’s functions we use, the field given by (1) satisfies the

boundary condition on the outer circular or rectangular contour.

Then, an integral equation for & is set up simply by imposing

that the tangential component of E must vanish on u. This

equation has nontrivial solutions, provided k is a resonant wave-

number of the perturbed structure, i.e., a cutoff wavenumber for

a mode of the perturbed waveguide.

When u divides SO into separate regions (such as SI and S2 in

Fig. l(b), (c)) our method yields the modes associated with the

different regions at the same time. When only one of these

regions is of interest, the pertaining modes can be easily identi-

fied.

It is pointed out that, in many practical cases, waveguide

shapes are actually modifications of the rectangular or the cir-

cular one. For instance, ridged wavegoides such as the one

recently considered by Dasgupta and Saha [3] maybe regarded as

a perturbed rectangular waveguide. In these cases, our approach

is particularly appropriate because the unknown function JO

must be determined at the perturbing surface only instead of at

the entire boundary, as it is the case in other integral equation

methods. This is very advantageous because it permits one to

consider smaller matrices in numerical computations. Anyway,

any boundary shape may be considered by inscribing a suitable

tubular sheet inside a rectangular or circular contour. Also in this

general case, our method permits to save computing time.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 11, NOVEMBER 1984 1497

II. FUNDAMENTAL EQUATIONS

The general expression for the dyadic G, given in [8] for the

rectangular and circular cross section is

~,(r, r’, k) = ~et(r, r’, k)+zozoGezz(r, r’, k) (2)

where Z. is the unit vector directed as the waveguide axis, ~,t is

a dyadic transverse to ZO, given by

G,t(r, r’, k) = –*vv’g(r, r’)+ G’,,(r, r’)

k2
+E 2

km(k: – k’)
em(r) em(r’) (3)

m

and

Gezz(r, r’, k) = g(r, r’)

k2
+Z22

kj(k~–kz)
+m(r)*m(r’) (4)

m

where

r and r’ generic observation and source points ipside SO,

respectively;

g the scalar two-dimensional Green’s function for

the two-dimensional Poisson equation subject to

the condition g = O at the boundary of SO;

km and k~ the cutoff wavenumbers for the TE and TM

modes, respectively, of the rectangular or circular

waveguide;

em the electric field for the m th TE mode;

+_m the axial electric field for the m th TM mode;

G,, the solenoidal dyadic, normal to the boundary,

satisfying

V X V XG~t(r, r’)=~8(r– r’)+ v&g(r,r’) (5)

where it is the transverse unit dyadic and 8( r – r’) represents the

two-dimensional delta function.

Both g and ~,f exhibit a logarithmic singularity when r and r’

coalesce. In case of a circular cross section, g and ~,t are known

in closed form. In case of a rectangular cross section, they are

known in the form of a rapidly converging one-index series where

the logarithmic singularity explicitly appears in the first term. For

ease of reference, the expressions for g and ~~t are given in

Appendix I.

The series appearing in (3) and (4) are regular everywhere

inside & and converge rapidly since their terms go to zero like

k;4 (or k~-4 ). Modal functions e. and ~~, which are real and

normalized according to

Jem. emdr=l
so

as well as the expressions for km and k~, may be found in many

text books (see [9], for instance).

The current density may be split into a transverse and a

longitudinal component according to

Jo(l’)= +(l’)t(l’)+&(l’)z~

where t represents the unit vector tangent to u and Jz, J= are

functions to be determined. Substituting (2)–(4) into (l), it is

found that the transverse and longitudinal components of the

electric field are related to Jt and .lZ, respectively, via the expres-

sions

– jnk~~,,(r,s’).t(l’)~(1’) dl’
o

(6)

l?=(r) = – jqkfg(r, s’)~(1’) dl’
a

The symbol of principal value has been retained only in tie first

integral in (6) because the functions in the remaking integrals are

regular or have an integrable singularity. For the purpose of

numerical computation, it is convenient to transform the prin-

cipal-value integral in (6) using the identity

which is obtained integrating by parts, observing that the singu-

larity of g is integrable, and taking into account the following

properties of g and <: a) g is zero at any extremum of u lying

on the boundary of SO; b) Jf vanishes at’ any extremum of u

coincident with an edge (e.g., at the tip of the fin in Fig. l(a)).

Equation (6) is stitable for representing the field of TE modes

at cutoff,- in which case both the current and the electric field are

transverse; (7) is suitable when tieating TM modes at cutoff, in

which case both the electric field and the current are longitudinal.

By imposing the boundary conditions E,. t = O, E= = O on o we

obtain the following equations:

TE Modes

;: Jg(.7.’)*~z’+Jt(z)Gr(.7.’)
u

t(l). em(s)
“2(1’) L(V) all’+ ~ kz am= O (8a)

m m

am ‘&&%n(s’)@l’)Jr( l’)dl’. (.ilb)
m

TM Modes

(9b)

It is pointed out that, in deriving (8a) and (9a), we divided both

sides by k: this is permitted because any of its possible values

(eigenvalues to be determined) must be different from zero either

for TE or TM modes.
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III. PROCEDKJREFOR THE CALCULATION OF TEMODES

~ is represented as

J(l’) = f b.w. ( 1’) (lo)
~=1

where b=(bl, bz,. ... b~ ) is an N-dimensional vector of numeri-

cal coefficients and { w } is an N-dimensional set of base func-

tions defined on u.

The infinite summation in (8a) is truncated up to the Mth

term, that is equivalent to truncate the series in the Green’s

function (3): this is a good approximation provided k is suffi-

ciently smaller than k~.

For computing purposes, u is divided into N elements, each

being approximated by a segment. The lengths of the segments

may differ from each other. Functions w. may be chosen as

shown in Fig. 2 where, for ease of representation, u has been

drawn as a straight line. Functions w. are piece-wise parabolic

and their derivatives are piece-wise linear. Functions like the one

sketched in Fig. 2(a), defined on three consecutive segments, are

used when both extrema neither belong to the boundary of SO

nor are edge points. Functions like those sketched in Fig. 2(b)

and (c), defined on two consecutive segments only, are used when

one extremum lies on the boundary of SOor is an edge point. The

choice of these latter functions accounts for the features of the

current at these particular points, namely: a) the current may

differ from zero at the extrema of u that belong to the boundary

of SO, but its derivative must be zero thereat; b) the current must

be zero at the edges but its derivative may differ from zero

(theoretically, of course, it is either zero or it diverges). Base

functions with derivative diverging at edges might be considered

if an improved approximation for the current is desired. Func-

tions w. are interlaced as shown in Fig. 2(d) and they permit to

synthesize very good approximations for the current.

Substituting (10) into (8a) and (8b) and using Galerkin’s proce-

dure [11] we obtain the following algebraic eigenvalue problem:

([::l-kz[::l)[~l=o ’11)
where a=(al, az,. . ., a~), U is the unit matrix of order M, O

is the N x M null matrix, the subscript t denotes the transpose

and

D=diag( k;2, k~2,. ... kM2) (12a)

aw( I) ay( 1’) ~ldl,
c,, =/Jg(s, s’)+—

au 81’
(12b)

‘zm=~~z(~)~(l).em(s)dl (12d)
m

i,j”=~,2,. ... N m=l,2,. ... M.

When determining (12b) we again used integration by parts and

took into account that either g or w. vanish at the extrema of u.

Matrices C and L are symmetric because of the reciprocity

properties of ~,, and g. In cases when u is either a loop-shaped

line or a line connecting two points belonging to the boundary of

SO, our functions w. permit one to synthesize constant currents.

This impfies that, in these cases, a linear combination of the

derivatives of the functions w. exists which vanishes on u. Then,

in the said cases, the derivatives of the functions w., unlike the

functions themselves, are not independent of each other. This

point lying on t~z~
boundaw0 f SO1

(a)

n

wn_, w“

2s22s?2
(b)

Fig. 2. Piece-wise parabolic base functions used for representing the trans-
verse current on the sheet and their derivatives.

observation is important in view of the considerations reported in

Appendix II which lead to conclude that: a) matrix L is always

positive definite; b) matrix C is positive definite only when u (or

any portion of it) is an open line not connecting points lying on

the boundary of SO; c) otherwise C is only semipositive definite

and its rank is R = N – P where P is the number of loops of u

plus the parts of u connecting points belonging to the boundary

of SO. In the last case P, vectors b exist such that Cb = O: it is

evident by inspection that such vectors associated with a null

vector a satisfy (7) with the eigenvalue k = O. This type of

solution must be rejected as spurious.

The solution of (11) constitutes a linear matrix eigenvalue

problem of order M + N, which can be solved using library-

routines such as those described in [12]. A more specialized

algorithm based upon the semipositive definiteness of matrix C

and the positive definiteness of matrix L maybe used [13]. This

algorithm reduces (11) to a standard matrix eigenvalue problem

(Ax = Ax) of order M + R, and calculates only the meaningful

(positive) eigenvalues.

Some doubts could probably arise about the validity of this

procedure when u happens to be everywhere perpendicular to the

electric field of one of the modes of the unperturbed wavegnide,

say the m th one: in fact, that mode pertains to the perturbed

waveguide as well and its cutoff wavenumber km must be an

eigenvalue of (11), so that (8b) becomes indeterminate because

em. t = O and k = km. However, since R,m = O for every i (see

(12d)), it turns out that the only equation in system (11) contain-

ing am is the m th one, namely

a~(l - k2\k;) = O.

Then it is evident that a solution of (11) exists such that k =

km, am #O, with all the other variables equal to zero. This is

exactly what is expected, so that our procedure holds also in this

particular case.

The field distribution pertaining to any value of k thus found

may be calculated using the expression

{[

awn(r) ~1,
E,(r) =–jq f /In *VJg(r,#)~

~=1 a

J 1 Mamem(r)
+k ~,, (r, s’)-t(l’)wn(l’)dl’ +k ~ kz

}

. (13)
a m+l m
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In cases when u divides & into two or several separate parts,

the calculation of E at some points suitably placed inside them

permits one to understand whether a cutoff wavenumber pertains

to the region of interest: in this case, indeed, the field in this

region strongly exceeds that in the remaining regions, which is

nearly zero. In some cases, however, the dimensions of the

interesting portion of SO are much larger than those of the other

portions so that one can expect that the lower eigenvalues pertain

to the region of interest. In these cases, the said test procedure

might be omitted.

IV. PROCEDURE FOR THE CALCULATION OF TM MODES

In comparison with the aforesaid procedure, the determination

of TM modes is fairly easier because (9a) is simpler than (8). Yz is

represented as

N

J(r) = ~ b;un( l’) (14)
n=l

where b’=(bf, b~,. ... b~ ) is an N-dimensional vector of

numerical coefficients and { u } is an N-dimensional set of base

functions defined on u. Triangular functions as those shown in

Fig. 3 maybe chosen. When edge points are present, “ half-trian-

gle” base functions are considered (Fig. 3(b)) in order to ap-

proximate the possible singularity in &. When an improved

approximation of the current is desired, singular base functions

might be considered. Applying Galerkin’s method, the problem is

cast into the matrix form

where a’= (a~, aj,. . ., ah), O’ is the N X N null matrix and

D’=diag( k~-2, kj-2,.. .,k~2) (16a)

(16b)

(16c)

Evidently problem (15) admits N independent solutions with

k = O, a’ = O, b’ # O, which must be discarded. Anyway; problem

(15) may be easily cast into the standard form

(D’- R;L’-lR)=k=*a*a (17)

which admits only M eigenvalues and eigenvectors. Vector f is

deduced from a’ by

~= _ L!-~Rla,- (18)

The rearrangement of (15) into (17) and (18) is possible because

L’ is always nonsingular (see Appendix II). Also for TM modes,

it is easily shown that no problem arises in particular cases when

u does not perturb a certain waveguide mode, that is when ~. is

everywhere zero on u.

The field is calculated using

[
E,(r) = – jqk 5 b~/g(r, s’)un(l’) dl’

~=1 u

M

1
+ z JK2$m(~)4n . (1%

m+l

In cases when u divides & into separate regions, the identifi-

cation of the modes pertaining to the region of interest is done

following the same procedure described for TE modes.

(a)

edge point

OJ)
Fig. 3. Triangular bsse functions used for representing the longitudinal cur-

rent on the sheet (or the charge, in the case of TEM modes).

V. PROCEDURE FOR THE CALCULATION OF TEM MODES

This case, included for completeness, is totally independent of

the above considerations. In fact, here one is interested only in

modal fields, because cutoff wavenumbers are obviously zero.

These fields are determined as gradients of the electrostatic

potential @(r), which may be expressed using the same scalar

Green’s function g previously considered. We have

Q(r) =~g(r, s’)po(l’) dl’ (20)
o

where pc represents the surface charge density on u.

Let us consider the case where Q inner conductors exist, whose

contours are the separate lines UI, Uz,. 0., u~, not contacting the

boundary of &. In this case, a is constituted by the set of the

said lines and, perhaps, by a further separate line a* contacting

the boundary of SO.

For any of the Q basic TEM modes, @(r) is uniquely de-

termined by assigning the potentials @l, 02,. ... QQ at the inner

conductors [15]. Denoting with Un triangular base functions like

those shown in Fig. 3, the charge density inside SO may be

represented as

N* N* + NI

%(1’) = ~ %’u. (1’)+ z b;un(l’)
~=1 II= N*+l

+- ..+ f b;un(l’) (21)
m= N–NQ+l

where each summation represents the charge distribution on the

various separate portions of u, and N*, Nl,. .-, N ~ are the

numbers of the base functions on o*, al,. ,., a~.

Observing that the potential on u* must be zero like the

potential of the boundary of SO, Galerkin’s procedure yields

-f
L,b,, _ (22)

where b“ is the N-dimensional vector constituted by coefficients

b$ L’ is the same N X N matrix defined by (16b), and ~ is the

N-dimensional vector defined as

(0> forl<n <N*

( <N*+ -..+Nq_l+Nq.

Since L’ is nonsingular, system (21) yields a solution for any

given vector ~.

The expression for calculating 0(r) is

O(r) = f b“~g(r,s’)un( l’) all’.
~=1 o

(23)
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VI. OUTLINE OF THE METHOD FOR COMPUTING MATRfX

ELEMENTS

A program has been set up which follows the discussed proce-

dure. Here we limit ourselves to outline the method adopted for

computing matrix elements but we fail to discuss specific ques-

tions (for instance, the possibility of reducing the size of the

matrices when symmetric geometries are dealt with, etc.). More

details may be found in [13].

Let us consider, for instance, the coefficient ~, given by (16b).

Due to the singular behavior of g, it is convenient to split g into

a singular and a regular part, writing

g(s, s’)= –&in R+gO(s, s’)

where R = Is –s’1 and gO is a regular function deducible from the

expressions reported in Appendix I. Then L~l may be cast into

the form

L:,=@)x,(z)~z+/ %(l)y(l)dl (24)
A,

where ‘J(Z) = ‘&~4 uj(z’)ln Roll’
J

x(Z) =~ ~J(~’)go(s, s’) dl’
J

(25a)

(25b)

and A, denotes the support of the function u,.

It is noted that functions XJ and ~ are regular and that

function x, maybe calculated analytically. Anyway, functions XJ
and ~, exhibit a quite complicated behavior which discourages

the exact amdytical calculation of L{,. For this reason, the

integrations appearing in (24) are performed analytically using

piece-wise parabolic approximations of these functions in place

of their exact expressions. The coefficients appearing in the

parabolic approximations are calculated in such a way that the

approximate functions are coincident with the exact values at

three points within each segment constituting AZ. Then the

computation of the integrals in (24) requires the previous de-

termination of the functions Xj and ~ at six points (or three

points in case of AJ placed at an edge , see Fig. 3(b)), The values

of x, are directly obtained from the known expression of this

function whereas the values of ~ are computed from (25b) using

similar piece-wise parabolic approximations for go.

The computation of coefficients C,j, Lz~, which involves singu-

lar integrands like the one discussed above, is performed follow-

ing the same procedure, The calculation of coefficients R,n, R~m,

is carried out using parabolic approximations for the functions

t(l). e~(s) and t)~(s).

It is pointed out that this method of computation is much

faster than conventional numerical integration; furthermore, our

choice of a parabolic approximation of the functions to be

integrated allows a high accuracy even in cases when A, and Al

are close to each other or when A, and/or A, are not small. This

advantages overwhelm the algebraic complexity of the procedure

we adopted.

VII. SOM EK4MPUN

The first example refers to a circular waveguide perturbed by a

radial conducting sheet (see Fig. 4). This example has been

chosen because the theoretical solution is known, thus permitting

the evaluation of the precision obtained. The sheet has been

divided into four segments, the one at the edge being much

shorter than the others, in order to achieve a good representation

of the rapid variations of the current near the edge while using a

‘3/2, 1

‘312, 1

TE
1/2,2

3/2,1

‘3/2, 1

‘5/2, 1

TTl
1/2,2

Fig. 4. Calculated mode patterns for a circular waveguide perturbed by a
radiaf fin. TE and TM mode r)attems show the electric and maznetic.
field-fines, respectively.
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ERROK (%)

(?,3 (0!1)

0.3 (0,2)

0,7 (0.7)

5.1 (5.1)

O.v?

O.ffi

0,20

LL24

TABLE I

N

4

5

11

4

9

Pu TIME MEIIORY

uSEC 2?K

14 SEC 2U K

base function of the type shown in Fig. 2(c). The errors in the

cutoff frequencies obtained for the lower TE and TM modes are

reported in Table I, together with CPU time and memory require-

ments referred to a Honeywell DPS8/44 computer (time for

tracing the mode patterns is not included). Fig. 4 shows the mode

patterns. TE mode patterns refer to the electric field, as calcu-

lated using (13). TM mode patterns represent the magnetic-field

lines obtained as constant-Ez contours. E= was calculated using

(19).

The accuracy obtained in the calculation of the field for the

TE1/z.1 mode is better illustrated in Fig. 5(a), which represents
the electric field along the diameter containing the perturbing fin.
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Fig. 5. Electric field dongthe &~etercomputed using: (a) bmefunction witifitite derivative attieedge, (b) bmefunctiontith tie
correct diverging derivative at the edge.

Computed values (represented by stars) are very close to the

theoretical ones (continuous line) except near to the tip of the

perturbing conductor. Field errors are ascribed to the use of a

base functionhaving afinitederivativeat the tip ofthefin,which

does not permit a sufficiently good approximation of the current,

whose derivative should diverge like’ (X–1)–112. It is noted,

however, that the inaccuracy of the representation of the current

has a small influence on the accuracy of the computed cutoff

wavenumbers: for instance, in spite of the small values of N and

M, the dominant cutoff wavenumber has an error of only 0.3

percent. This happens because the cutoff wavenumber is a varia-

tional quantity, whereas the field is not.

On the other hand, considering a more appropriate base func-

tion, whose derivative diverges with the correct law at the edge, is

no problem and it only introduces a small complication. We

explored the utility of introducing such a base function in the

computation of TE modes. In this case, the fin has been subdi-

vided into equal parts and the calculation has been repeated with

the same values of N and M as before. We found even better

precision in the calculation of the cutoff wavenumbers (see Table

I, vrdues in parentheses) and negligible field errors everywhere

(see Fig. 5b).

The second example concerns the calculation of the TM modes

for a circular waveguide starting from a square cross section.

Mode patterns and accuracies in wavenumbers are represented in

Fig. 6. This computation was performed considering the symme-

try with respect to a median of the square. In this calculation, we

employed N =10, M = 8. It is pointed out that the computed

fields were practically zero outside the region of interest. The

obtained accuracy was very good.

Figs. 4-6 evidence the excellent representation of the field

discontinuities at u. This is a consequence of the use of a Green’s

function where the singularity is expressed in closed form.

The last example concerns the double-ridged waveguide studied

by Jr.dl et al. [14] and, more recently, by Dasgupta and Saha [3]

(see Fig. 7). The values of &/a obtained for the first two TE

modes are reported in Table II. In this example, we used N =

11, M = 3 and we considered the symmetry.
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m= E= 0.206 %

& - 0.439 %
~31

mu E = 0.207 % 6 _ 0.284 %
m 4>

Fig. 6. Calculated TM mode patterns for the circular waveguide studied as a
square waveguide perturbed by a tubular sheet. The quantity c is the error
percent of the calculated cutoff wavenumbers.

We note that our method is particularly well suited for study-

ing the dominant mode of a reentrant waveguide as the one we

considered. In fact, in this case, the first eigenvalue is much

smaller than the cutoff wavenumber of the dominant mode for

the unperturbed guide, so that the modaf series maybe truncated

up to a very small number of terms (M equal 2, 1, or even 0!)

without any significant loss of accuracy, In other words, in this

case the field is determined very well using the low-frequency

approximation of the Green’s function.

VIII. COMPUTATIONAL ADVANTAGES

Our method requires the solution of a linear eigenvalue prob-

lem of order N + M or N for the determination of TE or TM

modes, respectively. We recall that N is the number of the

variables b, representing the current over the portion of the

boundary not coincident with the rectangular or the circular

boundary of SO and M is the number of the auxiliary variables

a, introduced to reduce the eigenvalue problem into a linear

form. Other methods based on an integraf equation require the

solution of a nonlinear eigenvalue problem of order N‘ > N,

equal to the number of the variables needed to represent the

current over the whole boundary of the waveguide. In this

section, we compare the computation time required by our method

with that required by other methods. In this comparison we refer

to the computation of TE modes, which is more cumbersome

than the computation of TM modes.

When most of the perturbed boundary coincides with the

unperturbed rectangular or circular boundary, in spite of the

introduction of the auxiliary variables a, N + M maybe less than

N’ and the computational advantage of using our method is

evident. Some doubts might arise about the utility of our al-

gorithm when the perturbed boundary is totally inside the unper-

1

+- T
b

r “

---- ---- .!

~“~

Fig. 7. Double-ridged waveguide. The relative dimensions are: b/a =

0.5: d/b = s/a = c/a = 0.125. The points drawn on a ridge indicate the
subdivision adopted in the calculation,

TABLE II

m

turbed boundary, since in this case our integral equation is over

the whole boundary as in other integral equation methods, and

N + M > N‘. Furthermore, our Green’s function looks more com-

plicated than the free-space Green’s function usually employed in

other methods.

Let us consider a typical case where the unperturbed boundary

is circular and N =10, M = 8. We found experimentally that, in

this case, CPU time required to perform the main operations is

approximately subdivided as fo]lows:

computation of matrix C(10 x 10) 0.2 T

computation of matrix L (10x 10) 0,4 T

computation of matrix R (8 X 10) 0.1 T

solution of the eigenwdue problem 0.1 T

where T is the total CPU time. It turned out that about 8–10 of

the computed modes were determined with acceptable accuracy.

Let us suppose to solve the same problem by the Spielman–

Barrington method [7], which we assume as representative of

other integral equation methods. Using this method, the cutoff

wavenumbers should be determined as the values of k which

minimize the determinant of a complex 10X 10 matrix Z(k),

whose elements are calculated using a formula similar to (12b),

but involving, in place of g, a Hankel function of argument

depending on k. We estimate that the calculation of Z( k) should

require a time of the same order of the time needed to calculate

our matrix C, that is 0.2 T. Localizing any of the minima of

det Z( k) should require repeated calculations of the elements of

Z(k) and of its determinant. Then, we may estimate that only

five of these calculations should take a longer time than T and

only five computations of det Z( k) are by far insufficient to

localize a minimum, especially when no estimate of its location is

available. Furthermore, the determination of the wall current for

any mode should require the computation of the eigenvector

corresponding to the smallest eigenvalue of the matrix X =

Im Z(k).

These brief considerations show the computational advantage

of our method, especially when more than one mode is to be

determined. It is pointed out that the advantage derives from the

possibility of reducing the determination of the cutoff wavenum-

bers to the solution of a linear eigenvalue problem, where matrix

elements are calculated only once.
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APPENDIX I G,, (.x, y,x’, y’)

A. Expressions of g and C,, for Two-Dimensional Resonators of

[
‘~~m #n Tin-D

IA4Xm S.
Circular Cross Section ~ + (T;’– B)(T. –D)—co 1

The radius of the circle is indicated by a and the polar
.

coordinates of the observation and source point are indicated by
“# :m “ (;y:~(;-::)

r) +; r’, +’, respectively. Fundamental unit vectors at the observa- . m

tion and at the source point are indicated by ?, ~, ?’, ~. We have

g(r, $, r’,+’)=+ ln(r’R,/aR)

[

~,, (r, $,r’, ~’) =: 2Cln(r’R, /aR)+
(r2+r’2)C-2rr’+ (r’ +r” +4a’)C-2rr’

R’ (r’R,/a)’

-(,+;)(l+$)(Lc-As+ (r,;;a,2)]
[ (r2-r’2)S +(r2+r’2-2a2)S

+% –2Sln(r’R, /aR)+ R2

(r’R,/a)2 +(’-$)(’+%~s+@]

[

(r2-r’2)S (r2+r’2-2a2)S
+% 2Sln(r’R, /aR)+ R2 –

(r’Ri/a)2
-(1+:)(1-$)(LS+AC)]

[

+% 2Cln(r’R1/aR)– ‘r’+ “~)2c-2rr’ + ‘r’+ “2 ‘2a2)(rrya2 ‘c) –~

(r’Ri/a)2

-(l-$)(l-$)(LC-AS+% ~)]

R = (r’+ r“ – 2rr’C)112

R, = (r’+ a4/r’2 –2ra2C/r’)1’2

C=cos(+–+’)

S=sin(@–#)

L = ln( r’R, /a2)

A = tg-l[rr’S/(a2 – rr’C)] .

B. Expressions of g and ~~, for Two-Dimensional Resonators of

Rectangular Cross Section

The section is referred to x, y axes with the origin placed at a

corner. The length of the sides of the rectangle are indicated by a

(in the x direction) and b. The fundamental unit vectors are

indicated by i, j. We have the following expressions: A=cos[~(x–x’)/a]

B=cos[fi(y-y’)/b]

C=cos[7r(x+x’)/a]

D = COS[77(y + y’)/b]

E = sin(wx/a)

F= COS(wx/a)

G = sin(nx’/a)
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H= cos(~x’/a)

I= sin(7y/b)

L = COS(7i’y/b)

M= sin( 7ry’/b)

N = COS(7#/b)

%n=k-%)’+(y-yn)’]’”
xM=(m+l/2)cz +(-l) m(x’-a/2)

ym=(m+l/2) b+(–l)m(y’– b/2)

xm=7r(x-xm)/b

Y~=7r(y-y~)/a

& = sinh(Xm)

T~ = cosh ( X~ )

U~=sinh(Y~)

V~=cosh(Y~).

Singularities in g and ~,, are exhibited by the terms correspond-

ingtom=O, n=O.

APPENDIX II

A. Semipositive Definiteness of Matrix C

Let us consider the quadratic form X,CX where x is any real

N-dimensional vector different from zero. Due to (12b) we have

Xtcx = ~ Xixj c,, = j44h(0 d[
13J

a

(Al)

where

rj(l) =~g(s, s’)p(l’) all’.
o

Due to the meaning of g, $(1) is coincident with the electrostatic

potential on u given by a charge density p distributed on u itself.

Then (Al) is coincident with the expression of the electrostatic

energy of this charge and, therefore, it is nonnegative. Null values

of XICX may occur only with” a vector x such that p(1) is zero, or,

equivalently, such that XX,Wt = constant. Due to the choice of the

basis {w, } such a vector exists if u connects two points lying on

the boundary of & (see Section III). More generally, denoting by

P the sum of the number of the portions of u which connect

points on the boundary plus the number of loops, P independent

such vectors exist. Then C has P null eigenvalues and its rank is

R= N–P.

B. Positive Definiteness of Matrix L’

It is easily deduced that a quadratic form assoicated with L’

represents the electrostatic energy due to a charge density given

by

p’(l) =~x, ul.
1

This cannot vanish, due to the independence of the functions u,.

Then, the quadratic form is always positive and matrix L’ is

positive-definite.

C. Positive Definiteness of Matrix L

Due to (12c), a generic quadratic form associated with L is

This expansion is easily established starting from (5), taking into

account that v x v x em = k~e~, n X em = O at the boundary,

and using the property of eigenvectors em of being mutually

orthogonal and orthogonal to v v ‘g. By substituting (A3) into

(A2), we obtain

(f )X,~X=~ ~f(z)t(Z)~(s) dl 2
m m

where f(1) = Zflxl w, ( 1). Since functions w, are linearly indepen-

dent f(1) cannot vanish, so that the quadratic form is always

positive. Then matrix L is positive-definite.
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Correction to “Quasi-Optical Method for Measuring

the Complex Permittivity of Materials”

F. I. SHIMABUKURO, MSMBER, IEEE

In the above paper,l in Column 1 of Table II on page 663,

Reference [9] should read [10] and Reference [10] should read

[12].

The solenoidrtl dyad ~,, maybe expanded as

em(r) em( r’)
G,,(r, r’) =x k2 .

m m
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